Success stories from the Asia-Pacific; Korea

Hyun-Soo Kim,
Yonsei Univ. Wonju College of Medicine, Wonju, Korea
Two tales of success stories

Colorectal Tumor Research Group
- KASID driven
- History of CTR group
 - organization
 - Published articles
- Current multicenter studies
 - CAP-ACE and follow-up
 - eCOLO-FITS

National Cancer Scr. Program
- NCC driven
- Nationwide organized CSP
 - structure
 - Screening rate changes
- Trends of CRC epidemiology
 - CRC incidence and mortality
 - Future tasks
History of CTR group in KASID

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 07, 2001</td>
<td>Workshop for national CR polyp database</td>
</tr>
<tr>
<td>Aug, 2002</td>
<td>Proposal for the risk factor of post-polypectomy bleeding: 15 institutions</td>
</tr>
<tr>
<td>Mar, 2004</td>
<td>Present the prevalence of CR polyp using prospective enrollment >20,000 subjects</td>
</tr>
<tr>
<td>Sep, 2004</td>
<td>Official inauguration of CTR group</td>
</tr>
<tr>
<td>Nov, 2004</td>
<td>1<sup>st</sup> meeting of CTR group</td>
</tr>
<tr>
<td>Jan, 2005</td>
<td>1<sup>st</sup> workshop of CTR group</td>
</tr>
<tr>
<td>2005 -</td>
<td>Winter workshop every other year</td>
</tr>
</tbody>
</table>
Prevalence of colorectal polyp according to age

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Adenoma (%)</th>
<th>Advanced Adenoma (%)</th>
<th>Colon Cancer (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>20</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20s</td>
<td>4.1</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>30s</td>
<td>11.8</td>
<td>3.0</td>
<td>0</td>
</tr>
<tr>
<td>40s</td>
<td>20.8</td>
<td>5.5</td>
<td>0.29</td>
</tr>
<tr>
<td>50s</td>
<td>27.6</td>
<td>7.5</td>
<td>0.22</td>
</tr>
<tr>
<td>60s</td>
<td>30.0</td>
<td>8.5</td>
<td>0.44</td>
</tr>
<tr>
<td>>69</td>
<td>33.8</td>
<td>12.1</td>
<td>0.44</td>
</tr>
</tbody>
</table>

P = 0.0238

P < 0.0001

2nd annual conference KASID, MAR, 2004
1. **Primary colon lymphoma in Korea: a KASID study**

2. **Diagnostic yield of advanced colorectal neoplasia at colonoscopy, according to indication: an investigation from the KASID**

3. **Risk factors for immediate postpolypectomy bleeding of the colon**

4. **Clinical significance of small colorectal adenoma less than 10mm: the KASID study**

5. **Comparison of postpolypectomy bleeding between epinephrine and saline submucosal injection for large colon polyps by conventional polypectomy: a prospective randomized multicenter study**

6. **Clinical significance of distal colon polyps for the prediction of an advanced proximal neoplasm: the KASID prospective multicenter study.**

7. **Clinicopathologic characteristics and malignant potential of colorectal flat neoplasia compared with that of polypoid neoplasia**
The first KASID interventional study

<table>
<thead>
<tr>
<th>Variables</th>
<th>OR(95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-related factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (≥65 vs. <65)</td>
<td>1.37 (1.02-1.83)</td>
<td>0.036</td>
</tr>
<tr>
<td>Anticoagulants (yes vs. no)</td>
<td>3.71 (1.05-13.05)</td>
<td>0.041</td>
</tr>
<tr>
<td>Cardiovas disease</td>
<td>2.08 (1.45-2.99)</td>
<td><0.001</td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td>3.29 (1.84-5.87)</td>
<td><0.001</td>
</tr>
<tr>
<td>Polyp-related factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size(>1cm vs. ≤1cm)</td>
<td>2.38 (1.78-3.18)</td>
<td><0.001</td>
</tr>
<tr>
<td>Gross morphology</td>
<td>1.42 (1.06-1.89)</td>
<td>0.017</td>
</tr>
<tr>
<td>Number of polyps (<3)</td>
<td>0.82 (0.61-1.10)</td>
<td>0.189</td>
</tr>
<tr>
<td>Adenomatous polys</td>
<td>0.94 (0.83-1.07)</td>
<td>0.363</td>
</tr>
<tr>
<td>Procedure-related factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowel preparation (<good)</td>
<td>1.54 (1.09-2.19)</td>
<td>0.016</td>
</tr>
<tr>
<td>Cutting current (vs. coagul)</td>
<td>6.95 (4.42-10.94)</td>
<td><0.001</td>
</tr>
<tr>
<td>Inadvertent cold polypectomy</td>
<td>7.15 (3.16-16.36)</td>
<td><0.001</td>
</tr>
<tr>
<td>Experience (fellow vs. staff)</td>
<td>1.32 (0.94-1.86)</td>
<td>0.107</td>
</tr>
</tbody>
</table>

- 5,152 patients, 2.8% early hemorrhage
- Am J Gastroenterol
8. An adequate level of training of technical competence in screening and diagnostic colonoscopy: a prospective multicenter evaluation of the learning curve

9. Clinicopathologic findings of colorectal traditional and sessile serrated adenomas in Korea: a multicenter study.

11. Endoscopic evaluation of significant gastrocolorectal lesions in patients with iron deficiency with and without anemia: a KASID study

12. Extracolonic findings of computed tomographic colonography in Koreans.

Clinical Practice Guidelines and National Surveys for the management of CRN

14. Comparison of bowel preparation depending on completion time of polyethylene glycol ingestion and start time of colonoscopy

15. Clinical Classification of Colorectal Epithelial Tumors and Proposal for Diagnostic Coding.

Kim SE, Hong SP, Kim HS, et al. Korean J Gastroenterol 2012;60:26-35

Current ongoing studies using web-based colonoscopy network

1. CAP-ACE and follow-up
2. eCOLO-FITS and individualized risk index for the prediction of ACRN
1. CAP-Assisted Chromo-Endoscopy (CAP-ACE) and follow-up
Flow diagram of CAP-ACE: 2010-2012

A total of 2004 eligible Subjects

13 subjects: had a history of previous colonoscopy

86 subjects were not performed the colonoscopy

A total of 1905 Subjects were enrolled

CAP-ACE group (N=948)

RC group (N=957)

Failure of cecum intubation (N=13)

Failure of cecum intubation (N=8)

Colonoscopy with CAP-ACE Method (N=935, 49.6%)

Colonoscopy with RC Method (N=949, 50.4%)

ADR, proximal ADR, PSPDR

Bowel preparation, Intubation time, Withdrawal time, Adenoma analysis
CAP-ACE enhanced ADR & Prox. ADR

<table>
<thead>
<tr>
<th></th>
<th>CAP-ACE (N=935)</th>
<th>RC (N=949)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. adenomas</td>
<td>1272</td>
<td>1024</td>
<td>0.004</td>
</tr>
<tr>
<td>ADR</td>
<td>54.4%</td>
<td>44.9%</td>
<td><0.001</td>
</tr>
<tr>
<td>Proximal ADR</td>
<td>38.6%</td>
<td>31.2%</td>
<td>0.001</td>
</tr>
<tr>
<td>Adv. ADR</td>
<td>3.3%</td>
<td>3.2%</td>
<td>0.897</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>0.4%</td>
<td>0.4%</td>
<td>1.000</td>
</tr>
</tbody>
</table>

ADR; adenoma detection rate, AADR; advanced adenoma detection rate.
2. Individualized risk based ACRN prediction; eCOLO-FITS

Efficacy and cost-Effectiveness of COLOnoscopy vs. Fecal Immunochemical Test-Sigmoidoscopy for the detection of advanced CRN: a multi-center cross-sectional RCT
Randomization

Computer based randomization
Allocated to
FIT-Sig based colonoscopy (Arm A) and direct colonoscopy (Arm B)

FIT-Sig based colonoscopy

All subjects underwent sigmoidoscopy
followed by colonoscopy thereafter.
Sigmoidoscopy was performed to reach around 50 cm from the anal verge after colonoscopy bowel preparation.
Story from organized national CRC screening program
Nationwide organized cancer screening (1999)

Managed by two systems (2005)

- Lower 50% & Medicaid: **National Ca. Screening Program**
- Upper 50% : **National Health Insurance Ca. Screening Program**
CRC screening program in Korea, 2004

- Target Population: men and women, 50 & over
- Frequency: every one year
- Test: Fecal Occult Blood Test (FOBT)
- Process

* DCBE: Double contrast barium enema
Trends in CRC Screening rate

The Korean National Cancer Screening Survey

Response rate; 35% (2004) ➔ 69% (2013)
CRC screening rates in Korea 2004–2013 Survey

<table>
<thead>
<tr>
<th>Year</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>APC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>19.9</td>
<td>25.4</td>
<td>29.4</td>
<td>34.1</td>
<td>37.9</td>
<td>36.7</td>
<td>35.5</td>
<td>35.3</td>
<td>44.7</td>
<td>55.6</td>
<td>3.0</td>
</tr>
<tr>
<td>FIT</td>
<td>3.8</td>
<td>7.2</td>
<td>13.6</td>
<td>20.2</td>
<td>20.9</td>
<td>19.0</td>
<td>25.9</td>
<td>25.0</td>
<td>29.6</td>
<td>27.6</td>
<td>2.7</td>
</tr>
<tr>
<td>CSP</td>
<td>14.4</td>
<td>12.4</td>
<td>16.8</td>
<td>19.5</td>
<td>19.1</td>
<td>23.4</td>
<td>23.3</td>
<td>23.6</td>
<td>30.1</td>
<td>35.2</td>
<td>2.2</td>
</tr>
<tr>
<td>DCBE</td>
<td>2.8</td>
<td>4.1</td>
<td>5.3</td>
<td>8.7</td>
<td>7.0</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
<td>3.8</td>
<td>7.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Screening rate with recommendation

- The proportion of respondents who fulfilled the screening recommendation criteria among the respondents in the targeted age group for the relevant cancer.
- **APC**: annual percentage change (%).

Lifetime screening rate

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25.3</td>
<td>27.9</td>
<td>34.0</td>
<td>40.7</td>
<td>50.4</td>
<td>48.1</td>
<td>57.1</td>
<td>56.1</td>
<td>65.8</td>
<td>70.3</td>
<td>5.0</td>
<td>70.3</td>
</tr>
</tbody>
</table>

Screening rate with recommendation; the proportion of respondents who fulfilled the screening recommendation criteria among the respondents in the targeted age group for the relevant cancer. **APC**: annual percentage change (%).
CRC screening rates with recommendation by sex, 2004-2013.

Results of the Korean National Cancer Screening Survey, 2004–2013

CANCER RESEARCH AND TREATMENT

Name of presenter
CRC screening rates with recommendation by age, 2004-2013.

Results of the Korean National Cancer Screening Survey, 2004–2013

CANCER RESEARCH AND TREATMENT
CRC screening rates with recommendation by income level

Results of the Korean National Cancer Screening Survey, 2004–2013

CANCER RESEARCH AND TREATMENT
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td>9,853,634</td>
<td>9,785,946</td>
<td>10,666,117</td>
<td>10,774,658</td>
<td>12,611,165</td>
<td>12,299,835</td>
<td>13,627,571</td>
<td>13,569,710</td>
<td>12,774,875</td>
<td>12,990,461</td>
<td>12,655,315</td>
</tr>
<tr>
<td>경보(공단)</td>
<td>6,178,800</td>
<td>5,566,483</td>
<td>6,928,541</td>
<td>5,015,450</td>
<td>5,411,302</td>
<td>5,366,785</td>
<td>6,322,835</td>
<td>6,455,420</td>
<td>6,041,214</td>
<td>6,183,919</td>
<td>5,896,972</td>
</tr>
<tr>
<td>경보(국가)</td>
<td>2,872,786</td>
<td>3,391,373</td>
<td>2,935,481</td>
<td>4,931,527</td>
<td>6,341,096</td>
<td>6,009,433</td>
<td>6,375,309</td>
<td>6,187,129</td>
<td>5,861,554</td>
<td>6,219,268</td>
<td>6,231,891</td>
</tr>
<tr>
<td>의료급여</td>
<td>802,048</td>
<td>828,090</td>
<td>802,095</td>
<td>827,681</td>
<td>858,767</td>
<td>923,617</td>
<td>929,427</td>
<td>927,161</td>
<td>872,107</td>
<td>587,274</td>
<td>526,452</td>
</tr>
<tr>
<td>liver</td>
<td>-</td>
<td>474,468</td>
<td>721,659</td>
<td>767,021</td>
<td>810,287</td>
<td>792,353</td>
<td>809,521</td>
<td>685,998</td>
<td>682,119</td>
<td>821,090</td>
<td>1,127,877</td>
</tr>
<tr>
<td>경보(공단)</td>
<td>-</td>
<td>49,962</td>
<td>394,428</td>
<td>355,219</td>
<td>330,977</td>
<td>325,535</td>
<td>353,428</td>
<td>302,266</td>
<td>325,585</td>
<td>379,088</td>
<td>529,886</td>
</tr>
<tr>
<td>경보(국가)</td>
<td>-</td>
<td>279,560</td>
<td>166,387</td>
<td>316,082</td>
<td>377,763</td>
<td>344,875</td>
<td>353,265</td>
<td>287,831</td>
<td>279,762</td>
<td>352,676</td>
<td>513,861</td>
</tr>
<tr>
<td>의료급여</td>
<td>-</td>
<td>144,946</td>
<td>160,844</td>
<td>95,720</td>
<td>101,547</td>
<td>121,943</td>
<td>102,828</td>
<td>95,901</td>
<td>76,499</td>
<td>89,326</td>
<td>84,130</td>
</tr>
<tr>
<td>colon</td>
<td>-</td>
<td>-</td>
<td>6,031,953</td>
<td>6,318,495</td>
<td>7,419,257</td>
<td>7,438,952</td>
<td>8,258,574</td>
<td>8,481,428</td>
<td>9,073,842</td>
<td>9,269,220</td>
<td>15,535,690</td>
</tr>
<tr>
<td>NHISP</td>
<td>-</td>
<td>-</td>
<td>3,685,376</td>
<td>2,843,563</td>
<td>3,012,164</td>
<td>3,094,005</td>
<td>3,518,220</td>
<td>3,855,809</td>
<td>4,023,939</td>
<td>4,058,333</td>
<td>7,099,096</td>
</tr>
<tr>
<td>NCSP</td>
<td>-</td>
<td>-</td>
<td>1,709,087</td>
<td>2,802,185</td>
<td>3,695,900</td>
<td>3,575,986</td>
<td>3,847,387</td>
<td>3,823,742</td>
<td>4,279,962</td>
<td>4,413,883</td>
<td>7,635,551</td>
</tr>
<tr>
<td>Med Aid</td>
<td>-</td>
<td>-</td>
<td>637,490</td>
<td>672,747</td>
<td>711,193</td>
<td>768,961</td>
<td>792,967</td>
<td>801,877</td>
<td>769,941</td>
<td>797,004</td>
<td>801,043</td>
</tr>
</tbody>
</table>
No. of screened and CRC found by NCSP

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No screened</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHISP</td>
<td>202,289</td>
<td>261,222</td>
<td>473,926</td>
<td>608,663</td>
<td>844,841</td>
<td>1,086,588</td>
<td>1,258,027</td>
<td>1,305,761</td>
<td>1,732,821</td>
</tr>
<tr>
<td>NCSP</td>
<td>201,952</td>
<td>460,468</td>
<td>621,788</td>
<td>693,353</td>
<td>887,774</td>
<td>1,056,486</td>
<td>1,383,391</td>
<td>1,577,787</td>
<td>1,976,393</td>
</tr>
<tr>
<td>Med Aid</td>
<td>37,409</td>
<td>77,477</td>
<td>72,642</td>
<td>90,252</td>
<td>99,718</td>
<td>138,370</td>
<td>153,245</td>
<td>165,564</td>
<td>175,625</td>
</tr>
<tr>
<td>No. CRC found</td>
<td>517</td>
<td>1,066</td>
<td>1,597</td>
<td>2,005</td>
<td>2,557</td>
<td>2,997</td>
<td>3,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% found</td>
<td>1.171</td>
<td>1.334</td>
<td>1.367</td>
<td>1.440</td>
<td>1.395</td>
<td>1.314</td>
<td>1.217</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Changing epidemiologic trends of CRC in Korea
Age-standardized CRC incidence rate by sex in Korea, 1999-2012.
Trends in mortality from CRC in APs:
age-standardized rate per 100,000
Moving toward big data analysis using HIRA and NHIC

1. Manpower resources
2. Pilot study for colonoscopy perforation
3. Interval CRCs
Resources-1
No. of total CSP claims; 2002-13

[Bar chart showing the number of total CSP claims from 2002 to 2013 for National Health Insurance Service (NHIS) and Health Insurance Review & Assessment Service (HIRAS).]
Resources-2
No. of Therapeutic CSP claims: 2002-13

National Health Insurance Service (NHIS)
Health Insurance Review & Assessment Service (HIRAS)
Perforation rate from FS studies and HIRA random sampling data set 2011

<table>
<thead>
<tr>
<th>Country</th>
<th>FlexSig</th>
<th>Colonoscopy</th>
<th>Referral rate</th>
<th>Overall N (rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>1 in 40,000</td>
<td>1 in 597</td>
<td>5.3%</td>
<td>5 (1 in 8000)</td>
</tr>
<tr>
<td>Italy</td>
<td>1 in 9911</td>
<td>1 in 775</td>
<td>8.4%</td>
<td>2 (1 in 4955)</td>
</tr>
<tr>
<td>Norway</td>
<td>0 in 12,995</td>
<td>1 in 469</td>
<td>19.5%</td>
<td>6 (1 in 2195)</td>
</tr>
<tr>
<td>Korea</td>
<td>NA</td>
<td>Op. cases</td>
<td>NA</td>
<td>9 (1 in 6009)</td>
</tr>
</tbody>
</table>

Atkin et al., Lancet 2002; Segnan et al., JNCI 2011; Holme et al., JAMA 2014; Kim et al, KDDW 2015
Cases summary of primary closure after CSP in NPS-HIRA 2011 dataset (9/54,084)

<table>
<thead>
<tr>
<th>No</th>
<th>Sex</th>
<th>Age</th>
<th>CPS</th>
<th>PostCPS Op. Day</th>
<th>Hosp</th>
<th>HD</th>
<th>Codes</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>82</td>
<td>DX</td>
<td>0-1</td>
<td>Diff</td>
<td>15</td>
<td>K650, S3650, K631</td>
<td>Recovered</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>59</td>
<td>DX</td>
<td>0-1</td>
<td>Same</td>
<td>12</td>
<td>K6359, T812</td>
<td>Recovered</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>58</td>
<td>TX</td>
<td>0</td>
<td>Diff</td>
<td>4</td>
<td>K650, D126, K631</td>
<td>Recovered</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>53</td>
<td>DX</td>
<td>1</td>
<td>Diff</td>
<td>11</td>
<td>K650, S3650</td>
<td>Recovered</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>79</td>
<td>DX</td>
<td>0-1</td>
<td>Same</td>
<td>13</td>
<td>K631</td>
<td>Recovered</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>58</td>
<td>TX</td>
<td>0-1</td>
<td>Diff</td>
<td>13</td>
<td>K635, T812, K631</td>
<td>Recovered</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>62</td>
<td>DX</td>
<td>0-1</td>
<td>Same</td>
<td>13</td>
<td>K650, S3650, K631</td>
<td>Recovered</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>46</td>
<td>DX</td>
<td>0-1</td>
<td>Diff</td>
<td>14</td>
<td>K635, T812, K625</td>
<td>Recovered</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>51</td>
<td>DX</td>
<td>0-1</td>
<td>Diff</td>
<td>14</td>
<td>K659, K631, K719</td>
<td>Recovered</td>
</tr>
</tbody>
</table>
interval colorectal cancers in Korea

Chang Kyun Lee, MD, PhD, Kui-Son Choi, PhD, Chang Soo Eun, MD, PhD
Dong-Ill Park, MD, PhD and Dong Soo Han, MD, PhD

Kyung Hee University Hospital, Seoul, Korea
National Cancer Center, Ilsan, Korea
Hanyang University, Seoul, Korea
Sungkyunkwan University, Seoul, Korea
Primary aim
- To explore impact of the National Quality Assurance Program (NQAP) for colonoscopy screening on risk of interval colorectal cancers (iCRCs)

Secondary aims
- To assess the annual incidence (prevalence ?) of iCRCs (within the national CRC screening program in Korea)
Success stories from Korea

• Success in CRC screening in Korea is too early to say because of epidemiologic trends in CRC incidence and mortality yet.

• We have strengths
 – KASID CTR group and NCC driven studies
 – Substantial colonoscopy capacity
 – Low economic burden ($60)

• Moving toward big data analysis using HIRA and NHI Services
 – Impact of screening program on CRC incidence and mortality
 – Colonoscopy harms; i.e., complications
 – Quality intervention on Interval cancer
IMKASID 2016

The 1st International Meeting on Intestinal Diseases

in Conjunction with the Annual Congress of the Korean Association for the Study of Intestinal Diseases

“New Horizons in Intestinal Research”

April 15(Fri) ~ 16(Sat), 2016 | Nine Tree Convention, Seoul, Korea

Important Dates
Abstract Submission Deadline | February 5 (Fri), 2016
Abstract Acceptance Notice | March 4 (Fri), 2016
Pre-registration Deadline | March 18 (Fri), 2016