Prevention of Interval Colorectal Cancers: What Do We Need to Know?

Takahisa Matsuda, M.D, Ph.D
Cancer Screening Division, Research Center for Cancer Prevention and Screening, Endoscopy Division, National Cancer Center, Tokyo, Japan

Japan Polyp Study Workgroup
Background

“Only option” that allows **visualization** and **removal** of lesions throughout the entire colon in a single test.

✓ Previous colonoscopy was associated with 60% reduction in CRC mortality\(^1\)) and 70% reduction in the incidence of late-stage CRCs\(^2\)).

“**Why does colonoscopy not prevent more CRCs?**”
CASE, 70 yrs Male

8 August, 2011

Retroflex View Straight View

M/D adenocarcinoma,
Type2, T3N0M0, A/Colon
5 adenomas (< 10 mm, LGD) were removed during 4 times TCS (in 2004, 2005, 2006, 2008)

M/D adenocarcinoma: pSS, n=0/33
Terminology and Definition of “Interval CRC”

Rabeneck L et al. proposed using the term “Postcolonoscopy CRC” for any CRC found after a colonoscopy. Rabeneck L, et al. Frontline Gastroenterol 2010

Large retrospective studies have used the percentage of CRCs that occur “6 to 36 months after colonoscopy” as a proxy for interval CRCs. Singh H, et al. Am J Gastroenterol 2010

WEO CRC Screening Meeting
Expert Working Group “Right-sided lesions & Interval CRCs”

CRC diagnosed after a screening test or examination in which no cancer is detected and before the date of the next recommended examination.

Incidence and Risk Factors of Interval CRC

<table>
<thead>
<tr>
<th>Retrospective Studies</th>
<th>Incidence of ICRCs:</th>
<th>Risk Factors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baxter et al.</td>
<td>6.8% (distal colon) vs 12.4% (proximal colon)</td>
<td>Endoscopist's specialty, non-hospital-based setting</td>
</tr>
<tr>
<td>Singh et al.</td>
<td>2.1% (distal colon) vs 5.9% (proximal colon)</td>
<td>Older age, diverticular disease, proximal location, endoscopist's specialty</td>
</tr>
</tbody>
</table>

Interval CRC; Frequency

- **Proximal Colon:** 5.9-14.4%
- **Distal Colon:** 2.1-6.8%

“These data suggest that interval CRCs are related, in large part, to the quality of the index exam”

Farrar et al. 2006 (Clin Gastroenterol Hepatol)

- 27% of ICRCs developed at previous polypectomy segments

Sanduleanu S, et al. Nat Rev Gastroenterol Hepatol 2012 (modified)
Molecular Characteristics of Interval CRCs

<table>
<thead>
<tr>
<th>Study (Population)</th>
<th>Results & Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval CRC vs Non-Interval CRC</td>
<td></td>
</tr>
<tr>
<td>MSI: 29.0-30.4% vs 10.3-11.0% (P<0.01)</td>
<td></td>
</tr>
<tr>
<td>KRAS mutation: 12.9% vs 28.9% (P=0.03)</td>
<td></td>
</tr>
<tr>
<td>CIMP-high: 57% vs 33% (P=0.004)</td>
<td></td>
</tr>
<tr>
<td>BRAF mutation: 28% vs 19% (P=0.18)</td>
<td></td>
</tr>
<tr>
<td>KRAS mutation is inversely associated with ICRCs and with MSI. BRAF mutation is not associated with ICRCs</td>
<td></td>
</tr>
</tbody>
</table>

Sanduleanu S, et al. Nat Rev Gastroenterol Hepatol 2012

Etiology of Interval CRCs

3 Plausible Reasons

1. Missed lesions
2. Rapid progression
3. Incomplete polypectomy

“These data suggest that interval CRCs are could be reduced substantially by high-quality colonoscopy”

- 50% to 75% of interval CRCs were likely the result of missed or incompletely resected lesions and less than 30% were rapidly progressing lesions.

- Most interval CRCs likely resulted from missed rather than new lesions (by using mathematic model).

✓ We previously reported two complete colonoscopies using high-definition endoscope may lengthen the follow-up interval after polypectomy based on the results of the Japan Polyp Study (JPS).

We detected “FIVE interval cancers” during 4 years’ surveillance period after baseline colonoscopy in our JPS...
Objectives

✓ To clarify clinicopathological characteristics of “Interval CRCs/Interval index lesions (ILs)*” and “Risk factors.

✓ To provide insight on the etiology of interval CRCs/Interval ILs.

* ILs: LGD ≥ 10 mm, HGD, Invasive cancer
Eligible patient (40-69 yrs)

Start

Interval 1 year

Initial colonoscopy (1st CS)

Confirmation colonoscopy (2nd CS)

Randomization

2nd follow-up colonoscopy

2nd follow-up colonoscopy

Interval 1 year

1st follow-up colonoscopy

Pure NAD [Adenoma (-)]

Internal control group

Clean Colon

2757

1087

1079

591

Interval Cancer (Case 1: 64 yrs, Male)

Initial colonoscopy (1st CS)

Confirmation colonoscopy (2nd CS)

10 months

T3N0M0
Borr. Type 2

Start

R

12m

24m
(1y)

1st follow-up colonoscopy

48m
(3y)

2nd follow-up colonoscopy

Interval Cancer (Case 1: 64 yrs, Male)

Initial colonoscopy (1st CS)

Confirmation colonoscopy (2nd CS)

10 months

T3N0M0
Borr. Type 2

Start

R

12m

24m
(1y)

1st follow-up colonoscopy

48m
(3y)

2nd follow-up colonoscopy
Interval Cancers
(Case 2: 56 y, Female, Case 3: 58 y, Male, Case 4: 59 y, Female)

Confirmation colonoscopy (2nd CS)

A/Colon: T1 (SM) 0-Ils

D/Colon: T1 (SM) 0-IIa+IIc

S/Colon: T1 (SM) 0-Ils(IIc)

Initial colonoscopy (1st CS)

Start

12m

24m (1y)

1st follow-up colonoscopy

48m (3y)

2nd follow-up colonoscopy

Confirmation colonoscopy (2nd CS)
Interval Cancer (Case 5: 62 yrs, Male)

Confirmation colonoscopy (2nd CS)

Initial colonoscopy (1st CS)

1st follow-up colonoscopy

2nd follow-up colonoscopy

Rectum: T2N0M0
Borr. Type 2

22 months
Introduction and informed consent sought by investigators

Eligible patient (40-69yrs)

Randomization

Initial colonoscopy (1st CS)

Confirmation colonoscopy (2nd CS)

Interval 1 year

Start 12m

2041 First time CS

2nd follow-up colonoscopy

2-Exam group

1-Exam group

1st follow-up colonoscopy

48m (3y)

Pure NAD [Adenoma (-)]

Internal control group

Clean Colon
We attempted to remove all neoplastic polyps.

We can evaluate the risk for "Index lesions (ILs)" one year after initial "clean colon".

* ILs: LGD ≥ 10 mm, HGD, Invasive cancer
Clinicopathological Characteristics of “Interval Index Lesions” at the 2nd CS

“Index lesions” after 1 year

56 lesions in 54 pts/ 2041 pts (2.6%)

[Interval cancer: 4 pts (0.2%)]

- Invasive Ca: 4
- Intra-mucosal Ca (HGD): 34
- LGD ≥ 10 mm: 18

T1 (SM)
Ca: 1

T3 Ca: 1

T1 (SM)
Ca: 2

• Proximal colon: 32 (57%)
 (mean size, SD: 11.2 ± 8.3 mm)
• Distal: 24 (43%)
 (mean size, SD: 8.9 ± 4.0 mm)
Clinicopathological Characteristics of “Interval Index Lesions” at the 2nd CS

“Index lesions” after 1 year

56 lesions in 54 pts/ 2041 pts (2.6%)
[Interval cancer: 4 pts (0.2%)]

- Invasive Ca: 4
- Intra-mucosal Ca (HGD): 34
- LGD ≥ 10 mm: 18

- T1 (SM) Ca: 1
- T3 Ca: 1
- T1 (SM) Ca: 2

- Proximal colon: 32 (57%)
 (Non-polypoid; 19/32: 59%)
- Distal: 24 (43%)
 (Polypoid; 18/24: 75%)
“Interval” Index Lesions

T/Colon: 12 mm, IIa+IIc (LST-NG)

During the 2nd colonoscopy, we detected many flat lesions

\% NP-CRN\textsl{s}/ All Index Lesions
25/56 (45%)
Proximal: 19/32 (59%)
Distal: 6/24 (25%)

T/Colon: 12 mm, IIa (LST-NG)
Risk Factors of the Interval Index Lesions - Univariate Analysis -

<table>
<thead>
<tr>
<th></th>
<th>IL (+) (n=54)</th>
<th>IL (-) (N=1987)</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Male/ Female)</td>
<td>41/13</td>
<td>1206/781</td>
<td>1.25 (1.07-1.46)</td>
</tr>
<tr>
<td>Age (≥ 60/< 60)</td>
<td>31/23</td>
<td>874/1113</td>
<td>1.31 (1.03-1.65)</td>
</tr>
<tr>
<td>CRC family history* (+/-)</td>
<td>5/49</td>
<td>279/1708</td>
<td>0.66 (0.28-1.53)</td>
</tr>
</tbody>
</table>

1st CS Findings

<table>
<thead>
<tr>
<th></th>
<th>IL (+)</th>
<th>IL (-)</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowel Preparation (Fair/ Good, Excellent)</td>
<td>1/53</td>
<td>100/1887</td>
<td>0.37 (0.05-2.59)</td>
</tr>
<tr>
<td>Index lesion (+/-)</td>
<td>21/33</td>
<td>483/1504</td>
<td>1.60 (1.14-2.26)</td>
</tr>
<tr>
<td>Polyp size** (≥ 6mm/≤ 5mm)</td>
<td>34/20</td>
<td>872/1115</td>
<td>1.43 (1.16-1.77)</td>
</tr>
<tr>
<td>No. of polyp** (≥ 3/1-2/0)</td>
<td>24/19/11</td>
<td>469/871/647</td>
<td>1.88 (1.38-2.56)🗀</td>
</tr>
</tbody>
</table>

* First Degree Relative ** Maximum size/ Number of adenoma during the 1st TCS
🗀 Polyp number (≥ 3 vs 1-2/0)
Risk Factors of the Interval Index Lesions

- **Multivariate Analysis** -

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>IL (+) (n=54)</th>
<th>IL (-) (N=1987)</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Male/ Female)</td>
<td>41/13</td>
<td>1206/781</td>
<td>1.68 (0.90-3.12)</td>
</tr>
<tr>
<td>Age (≥ 60/< 60)</td>
<td>31/23</td>
<td>874/1113</td>
<td>1.55 (0.90-2.68)</td>
</tr>
<tr>
<td>CRC family history* (+/-)</td>
<td>5/49</td>
<td>279/1708</td>
<td>0.64 (0.26-1.59)</td>
</tr>
<tr>
<td>1st CS Findings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowel Preparation (Fair/ Good, Excellent)</td>
<td>1/53</td>
<td>100/1887</td>
<td>0.35 (0.05-2.58)</td>
</tr>
<tr>
<td>Index lesion (+/-)</td>
<td>21/33</td>
<td>483/1504</td>
<td>1.21 (0.63-2.30)</td>
</tr>
<tr>
<td>Polyp size** (≥ 6mm/≤ 5mm)</td>
<td>34/20</td>
<td>872/1115</td>
<td>1.40 (0.69-2.84)</td>
</tr>
<tr>
<td>No. of polyp** (≥ 3/ 1-2/ 0)</td>
<td>24/19/11</td>
<td>469/871/647</td>
<td>1.73 (0.96-3.13)†</td>
</tr>
</tbody>
</table>

* First Degree Relative ** Maximum size / Number of adenoma during the 1st TCS
† Polyp number (≥ 3 vs 1-2/ 0)
Conclusion

Uncertain Issues

1. Relationship between serrated lesions (SSA/P) and interval CRCs
2. Objective measurements of “high-quality colonoscopy” ... ADR? FDR? SDR?
3. Endoscopist training; how to train young endoscopists?
Thank you for your kind attention