WEO position statement on hygiene in digestive endoscopy:
Focus on endoscopy units in Asia and the Middle East

Abdullah Murdani,1 Ajay Kumar,2 Han-Mo Chiu,4 Khean-Lee Goh,5 Byung Ik Jang,6 Christopher J. L. Khor,7 James Lau,9 Ibrahim Mostafa,10 Mohan Ramchandani,3 Siriporn Ratanalert,11 Hisao Tajiri,12 Minghwa Yuen,8 Shu Tian Zhang,13 Dianelle Duforest-Rey14 and Jean-Francois Rey14

1Department of Internal Medicine, Universitas Indonesia, Jakarta Timur, Indonesia, 2Fortis Escorts Liver and Digestive Diseases Institute, New Delhi, 3Asian Institute of Gastroenterology, Hyderabad, India, 4Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, 5Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 6Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea, 7Department of Gastroenterology and Hepatology, Singapore General Hospital, 8Cantel Medical Asia/Pacific Pte. Ltd, Singapore, Singapore, 9Endoscopy Center, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, 10Endoscopy Unit, Department of Gastroenterology and Hepatology, Theodor Bilharz Research Institute, Cairo, Egypt, 11NKC Institute of Gastroenterology, Songklanagarind Hospital, Songkhla, Thailand, 12Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan, 13Beijing Friendship Hospital, Beijing, China and 14Institut Arnault Tzanck, Saint Laurent, France

The aim of this position statement is to reinforce the key points of hygiene in digestive endoscopy. The present article details the minimum hygiene requirements for reprocessing of endoscopes and endoscopic devices, regardless of the reprocessing method (automated washer-disinfector or manual cleaning) and the endoscopy setting (endoscopy suite, operating room, elective or emergency procedures). These minimum requirements are mandatory for patient safety. Both advanced diagnostic and therapeutic endoscopies should be carried out in an environment that is safe for patients and staff. In daily practice, routine reprocessing of endoscopes and endoscopic devices must follow international standards, even in small endoscopy units. Usable frequently used devices that have been cleaned manually should be as effective and safe as those reprocessed by automated washer-disinfectors (WD) or as single-use devices. Education and training of all endoscopy staff is necessary.

INTRODUCTION

In many endoscopy units in Asia and the Middle East, reprocessing procedures have lagged behind those of Western countries for cultural reasons or lack of financial resources. This inconsistency in standards is now being addressed, and the World Endoscopy Organization (WEO) has prepared this position statement to highlight key points for quality assurance in any endoscopy unit in any country.

Both advanced diagnostic and therapeutic endoscopies should be carried out in an environment that is safe for patients and staff. In daily practice, routine reprocessing of endoscopes and endoscopic devices must follow international standards, even in small endoscopy units. Use of reusable devices that have been cleaned manually should be as effective and safe as those reprocessed by automated washer-disinfectors (WD) or as single-use devices. Education and training of all endoscopy staff is necessary.

Key words: Asia, endoscope reprocessing, hygiene, Middle East, patient safety
mandatory. Recommendations for the effective reprocessing of endoscopes and endoscopic devices have been issued by the American Society for Gastrointestinal Endoscopy (ASGE), European Society of Gastrointestinal Endoscopy (ESGE), and the European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA). The cascade guideline published by the WEO with the World Gastroenterology Organization (WGO) is a good example of how to take into account local resource availability.1–7

The aim of this position statement is to reinforce the key points of hygiene in digestive endoscopy. The present article details the minimum hygiene requirements for reprocessing of endoscopes and endoscopic devices, regardless of the reprocessing method (automated WD or manual cleaning) and the endoscopy setting (endoscopy suite, operating room, elective or emergency procedures). These minimum requirements are mandatory for patient safety. Particular attention is paid to variations in procedures according to the reprocessing method used, duodenoscope-specific procedures, and the reprocessing of endoscope accessories. National guidelines and statements from individual countries of Asia and the Middle East have also been included. Details and literature are available in multiple guidelines as cited in the References.

HIGH-LEVEL DISINFECTION

HIGH-LEVEL DISINFECTION (HLD) of medical devices by peracetic acid (PPA), orthophthalaldehyde (OPA), and glutaraldehyde (GA) results in the reduction or destruction of all vegetative microorganisms, mycobacteria, small or non-lipid viruses, medium or lipid viruses, fungal spores, and some, but not all, bacterial spores to a level appropriate for safe use in patients.

Flexible endoscopes are exposed to body fluids and other contaminants. Procedural errors in decontamination, defective equipment, and failure to follow disinfection guidelines are major factors contributing to transmission of infection during endoscopy. Other important risk factors include inadequate cleaning, use of older endoscopes with surface and working channel irregularities, and contamination of water bottles or irrigating solutions.

Further risks are associated with the design or maintenance of automated endoscope WD, improper selection of disinfecting agents, inadequate drying and/or storage of endoscopes and, in particular, incorrect connectors.

In order to prevent transmission of infections, flexible gastrointestinal endoscopes (as well as other heat-sensitive endoscopes) require proper cleaning and, at a minimum, HLD following each use. However, some bacterial spores may survive disinfection if present in high numbers, and therefore, pre-cleaning and a visual check for reduction of bioburden are important.

Effective disinfection of all parts of the endoscopic equipment is necessary to prevent transmission of infection during subsequent endoscopies. This includes the external surface of the scope, the internal channels for air, water, and accessory devices, and any accessories that were passed through the working channels, such as biopsy forceps.

Some pathogens are more difficult to eliminate during the endoscopy disinfection process than others. These pathogens are (in decreasing order of resistance to disinfectants/sterilization):

- prions; e.g. Creutzfeldt-Jakob prion;
- bacterial spores; e.g. *Bacillus subtilis*;
- coccidia; e.g. *Cryptosporidium parvum*;
- mycobacteria; e.g. *Mycobacterium tuberculosis, Mycobacterium terrae*;
- non-lipid or small viruses; e.g. poliovirus, coxsackie viruses.
- fungi; e.g. *Aspergillus* spp., *Candida* spp.
- vegetative bacteria; e.g. *Staphylococcus aureus, Pseudomonas aeruginosa*;
- lipid or medium-sized viruses; e.g. HIV, herpes viruses, hepatitis B and C viruses.

Given the range of pathogens that can contaminate endoscopic equipment, and the difficulty in eliminating some of them, it is important that the hygiene protocols in endoscopy units are validated and that periodic microbiological sampling is conducted, as this is the only way to maintain quality of the hygiene procedures and ensure that any shortcomings are rectified swiftly and effectively before patients or staff become infected or suffer harm.

MINIMUM REQUIREMENTS

IN ALL ENDOSCOPY settings, the following procedures should be followed, regardless of whether manual or automated reprocessing is used.

Pre-cleaning

Pre-cleaning is necessary to prevent fixation of biomaterial in the endoscope channels and on the outer surfaces of the endoscope. Key points are as follows.

- Pre-cleaning must be carried out immediately after the procedure at the point of use prior to disconnecting the endoscope from the power source.
The endoscope insertion tube must be wiped down using an appropriate detergent solution.

The endoscope channels must be flushed through using an appropriate detergent solution.

Leak testing

The purpose of leak testing is to ensure that the endoscope has not been perforated. Leak testing is crucial to prevent fluid invasion into the working elements of the scope and damage to the scope, and is critically important to ensure that there are no areas in which microorganisms will be protected from contact with the high-level disinfectant.

Brushing, cleaning, and rinsing

Brushing, cleaning, and rinsing are necessary to remove biomaterial from the endoscope channels and the outer surfaces of the endoscope. Key points in this procedure are as follows.

- An appropriate brush/cleaning device should be used to clean the endoscope channels. A new brush should be used for each scope. (If cleaning brushes are to be reused, they should undergo the same treatment as the scope for cleaning and disinfection.)
- An appropriate low-foaming detergent should be used.
- Specified instructions, such as those relating to concentration, contact time, contact temperature, and rinse requirements, should be followed.

Disinfection

Key points for disinfection are as follows.

- An appropriate high-level disinfectant should be used (see Endoscope Reprocessing below for the properties of the ideal disinfectant).
- Specific instructions from the manufacturer relating to concentration, contact time, contact temperature, and rinse requirements should be followed.

Drying

Drying is an important step in the reprocessing of endoscopic equipment. Any moisture left within an endoscope may permit the growth of microbes.

- The outer surface of an endoscope should be patted dry with a clean lint-free cloth, and the channels should be purged with compressed air following guideline recommendations.

Storage

To prevent the growth of microbes as well as reduce the risk of cross-contamination, endoscopes should be stored in a controlled environment. Endoscopes can be stored either vertically (hanging), or horizontally (shelved). If horizontal storage is used, the cabinet should provide a means to continually purge the channel with high-efficiency particulate air.

Transportation

Endoscopes should always be transported within a protected/enclosed environment to prevent users from being contaminated by dirty scopes or clean scopes from being contaminated by the operators and the environment.

Water quality for endoscope reprocessing

Water quality plays a fundamental role in endoscope reprocessing. It is important to ensure that water quality meets the minimum standards (potable water quality standards).

Microbiological sampling

Water should be tested periodically at the source, at the point of use, and inside the automated endoscope WD. Endoscopes should be randomly tested at routine intervals.

Training and monitoring

Staff training and monitoring/auditing are also minimum requirements to ensure hygiene.

ENDOSCOPE REPROCESSING

Endoscope pre-cleaning should always be carried out immediately after finishing the procedure, independently of where the endoscopy procedure is done:

- in the endoscopy department or in a different department (in the operation room, intensive care ward) which requires time for transportation;
- as a planned procedure on the daily list or as an emergency case outside regular service time (e.g. during the night or at weekends).

Time between the end of the procedure to the meticulous pre-cleaning steps should not exceed 30 min (as a guide) in order to avoid any debris, fluid or other contaminant from drying and sticking firmly to the instruments.

The ideal disinfectant has the following properties:

© 2016 Japan Gastroenterological Endoscopy Society
• effective against a wide range of organisms, including blood-borne viruses and prion proteins;
• compatible with endoscopes, accessories, and endoscope reprocessors (PPA, OPA, GA);
• non-irritant and safe for users;
• permits environmentally friendly disposal.

Disinfectants must be used at the correct temperature and in accordance with the manufacturer’s instructions and current recommendations in the literature. The disinfectants should be tested regularly with test strips and/or kits provided by manufacturers to ensure optimal activity of the products.

Factors influencing the choice of disinfectant include:

• dilution process;
• stability of the solution;
• number of reuses possible;
• direct cost;
• indirect costs (e.g. appropriate WD, storage space, conditions for use, staff protection measures).

Thorough drying of the entire endoscope channels and surfaces should always be carried out before storage in order to avoid any growth of microorganisms.

Automated washer-disinfectors

ESGE/ESGENA guidelines are available for reprocessing using WD.4

Before automated reprocessing, staff should ensure that all manual pre-cleaning steps have been carried out according to local standard operating procedures or the manufacturer’s instructions for use.

Endoscopes and their components should be placed correctly in the WD. All channels should be connected according to the manufacturer’s recommendations, even if they were not used during the procedure.

Table 1 Advantages and disadvantages of automated endoscope washer-disinfectors

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>High grade of standardization in reprocessing</td>
<td>High cost</td>
</tr>
<tr>
<td>Low risk of either patient or staff infection</td>
<td>Dedicated user skills/knowledge required</td>
</tr>
<tr>
<td>Complete documentation</td>
<td>Additional validation costs covered by users</td>
</tr>
<tr>
<td>Full compatibility with latest European standards</td>
<td>More complexity and more training required</td>
</tr>
<tr>
<td>Economic use of chemicals and other resources</td>
<td>If not regularly maintained, there is a risk of infection</td>
</tr>
<tr>
<td>User friendly</td>
<td></td>
</tr>
<tr>
<td>Reliable</td>
<td></td>
</tr>
<tr>
<td>Regular validation of full process will increase reliability</td>
<td></td>
</tr>
</tbody>
</table>
Manual cleaning

Manual reprocessing of endoscopes gives reliable results, provided that well-trained and competent staff carry out endoscope reprocessing conscientiously and according to defined standard operating procedures. However, there are several disadvantages to manual reprocessing of endoscopes, including potentially severe risks to patients and staff. Therefore, the same precautions as for automated WD are required. Regular audit and ongoing training are required to maintain the quality of manual cleaning procedures.

A summary of the advantages and disadvantages of manual endoscope reprocessing is shown in Table 2.

Duodenoscope-specific procedures

Since the late 1970s, there have been sporadic reports of nosocomial infections linked to endoscopic procedures. The majority of documented cases were caused by:

- non-compliance with national and international guidelines (including inadequate reprocessing, drying or storage of endoscopes, and endoscopic accessories);
- damage and design limitations of endoscopes and accessories;
- defective or contaminated endoscope WD;
- insufficient processing chemicals (wrong substances, temperature, dosage);
- contaminated rinsing water;
- recontamination caused by insufficient handling of reprocessed endoscopes and equipment, and insufficient hand hygiene.

Infections by multidrug-resistant organisms have become an increasing problem in health-care systems worldwide. Since 2010, outbreaks of multidrug-resistant bacteria associated with endoscopic retrograde cholangiopancreatography (ERCP) have been reported from the USA, France, Germany, and The Netherlands.10

Duodenoscopes have a side-viewing distal tip with an elevator mechanism, which allows fine movements and controlled insertion of accessories into the biliopancreatic system. This complex design has been a challenge for reprocessing since the establishment of ERCP in the 1970s. Currently available duodenoscopes differ in the design of their distal tip and their elevator mechanism, depending on the manufacturer and the endoscope generation. The different designs must be taken into account during reprocessing.

In reported outbreaks, duodenoscopes with a fixed distal end and a sealed elevator wire channel were more often involved than other models. Discussion and actions taken have been focused on Olympus endoscopes, although it is important to stress that duodenoscopes from all major manufacturers (Olympus, Pentax, Fujifilm) have been affected in reported outbreaks. It is also important to emphasize the following points.

- Written reprocessing protocols, based on the manufacturer’s instructions, should clearly explain the different reprocessing steps necessary for the different types of endoscope.
- Special cleaning equipment that strictly follows the manufacturer’s recommendations should be used for duodenoscopes.
- Only purpose-designed single-use cleaning brushes should be used.
- Special emphasis should be placed on thorough cleaning and drying of duodenoscopes.

In addition to the leak test, visual inspection of the distal end as well as frequent maintenance of

Table 2 Advantages and disadvantages of manual endoscope reprocessing

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to establish without any major investments</td>
<td>Validation is not possible, but standardization for all reprocessing steps is possible</td>
</tr>
<tr>
<td></td>
<td>Increased risk of human error (inconsistencies, mistakes etc.)</td>
</tr>
<tr>
<td></td>
<td>Staff exposure to processing chemicals and potentially infectious material; additional precautions necessary</td>
</tr>
<tr>
<td></td>
<td>Increased workload because staff required for each reprocessing step</td>
</tr>
<tr>
<td></td>
<td>In case of reuse of disinfectant, efficacy problems to be expected</td>
</tr>
<tr>
<td></td>
<td>Traceability and documentation is more time-consuming and more difficult</td>
</tr>
<tr>
<td></td>
<td>Increased risk of recontamination, followed by increased risk of infection for patients</td>
</tr>
<tr>
<td></td>
<td>Increased risk of health problems for staff (infection, injuries, allergies etc.)</td>
</tr>
</tbody>
</table>

© 2016 Japan Gastroenterological Endoscopy Society
duodenoscopes should be carried out according to manufacturer’s recommendations in order to detect any damage at an early stage.

Reprocessing of endoscope accessories

Endoscope accessories include all removable parts of the endoscope and devices that are inserted into the endoscope channels. Major devices include biopsy forceps, hook wires, guidewires, and balloon dilators.

Endoscopic accessories that penetrate the mucosal barrier (e.g. biopsy forceps, guidewires, polypectomy snare, injection needles) are classified as critical devices and must be sterile at the point of use. Accessories that come into contact with the skin and intact mucosa only are defined as non-critical devices (e.g. mouth guards, blood pressure cuff, finger tips or electrodes) and do not need to be sterile, but must undergo disinfection. Due to the need for traceability, these accessories are often single-use items. Blood pressure cuffs and electronic cables which come in direct contact with the patient need to be cleaned and disinfected by surface disinfectants after each use.

Recommendations from the Korean Society of Gastrointestinal Endoscopy (KSGE) can be used as an example for the reprocessing of critical devices.

- Disinfect all reusable endoscopic accessories.
- Immerse dismantled endoscopic accessories in detergent solution, and use a brush and sponge to clean the internal surfaces.
- Clean accessories using an ultrasonic cleaner in detergent solution.
- After rinsing accessories with clean water, use a clean cloth and compressed air to dry the device.
- Reusable accessories such as suction, air water valve, and rubber biopsy valve caps should undergo HLD before reuse.
- Disposable needles or forceps should not be used more than once.
- The water bottle and its connecting tube should be sterilized once a day and should contain sterile water.

Proper reprocessing of endoscope accessories is vital but it is also important to consider that repeated sterilization and reuse can gradually reduce the effectiveness of accessories. In particular, repeated reprocessing of biopsy forceps may cause damage and render them more susceptible to contamination as they are not durable. Biopsy forceps can be reprocessed and reused in a cost-effective way. However, they are increasingly used only once in many countries, and a Korean study found that clinical efficacy of biopsy forceps was greater when used once only. Single-use biopsy forceps can be economical if the reprocessing costs are high; however, disposable biopsy forceps must be used for patients who have infectious diseases in order to prevent the spread of infection. Guidelines recommending the use of disposable needles are increasing in Europe. Debate over the reuse of single-use devices continues in many countries. The issue of safety versus availability of financial resources has to be considered in individual jurisdictions. In some countries, reusing single-use devices is illegal.

To date, there has been no report of the optimal replacement frequency, safety, and potential risks associated with water bottles, lens wash water, tubing for air insufflations, waste vacuum containers, and suction tubes used in endoscopy. However, these accessories should be disinfected once a day and should contain sterile water.

For critical devices, the development of single-use accessories has obviated the risk of cross-contamination; however, the cost of such devices could be a limitation in some endoscopy units. Single-use devices are not designed for reuse either in terms of their ability to be disinfected or in endoscopic performance.

STAFF PROTECTION AND TRAINING

Rепrocessing procedures must ensure the protection of staff, including nurses, assistants, and those in continuing medical education. Training is therefore essential. Key points for staff protection and training are as follows.

- Endoscopy staff should be protected against infectious material during the endoscopy procedure as well as against direct contact with contaminated instruments or chemicals during the reprocessing procedures.
- Department-specific health and safety policy as well as appropriate equipment should be available for the management of spills, and the handling of sharps, chemicals, and body fluids.
- Staff involved in the reprocessing procedure should wear appropriate personal protective equipment including:
 - chemical-resistant single-use gloves;
 - protective glasses and face masks or protective full-face visors;
 - respiratory protective equipment in case of spillage of chemicals that are respiratory sensitizers;
 - special examination/protection coat (long-sleeved, moisture-resistant).
- Splashing should be avoided during the entire reprocessing procedure in order to avoid contact with infectious material and disinfectants or detergents.
<table>
<thead>
<tr>
<th>Country</th>
<th>Standards followed</th>
<th>Pre-cleaning</th>
<th>Endoscope reprocessing</th>
<th>Endoscope disinfection</th>
<th>Accessories</th>
<th>Training</th>
<th>Monitoring and audit</th>
<th>Local cascade recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>China Health Human Resources. Technical specification for cleaning and disinfection of endoscope 2004</td>
<td>Carried out in endoscopy room by nurse</td>
<td>Carried out immediately after the procedure. Manual pre-cleaning compulsory before automated reprocessing</td>
<td>Disinfectants used as recommended; however, as a result of high cost, some centers sterilize disposable accessories</td>
<td>No training programs on disinfection. At local level, training on disinfection for nurses and doctors in hospitals, mainly delivered by endoscopy companies</td>
<td>Only done in big hospitals that are accredited or working toward accreditation</td>
<td>Biological monitoring of HLD of endoscopes carried out quarterly; sterilization of the endoscope carried out monthly</td>
<td>No local cascade recommendations</td>
</tr>
<tr>
<td>Egypt</td>
<td>No local standards. European and American guidelines</td>
<td>As per European and American guidelines</td>
<td>Recommended disinfectants used, as per European and American guidelines</td>
<td>Disposable accessories used as recommended</td>
<td>No training programs on disinfection. At local level, training on disinfection for nurses and doctors in hospitals, mainly delivered by endoscopy companies</td>
<td>Only done in big hospitals that are accredited or working toward accreditation</td>
<td>No local cascade recommendations</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Local standard follows the SGNA, BSG, ESGENA, Hong Kong Hospital Authority</td>
<td>Carried out in the procedure room immediately after removal of insertion tube from the patient and prior to disconnecting the endoscope from the power source. Specific reprocessing area for endoscope reprocessing</td>
<td>Manual reprocessing and WD used</td>
<td>Manual disinfection: (Ethicon Inc., Cincinnati, Ohio, USA) Cidex® OPA (12-min contact time at 20°C) Olympus WD (PAA at 20°C, 5-min contact time for standard disinfection, 10 min for mycobacteria and bacteria spores). Rinsing: bacteria filter 0.2 µm recommended for final rinse. Disinfected endoscope must be used within 3 h, otherwise, it must be pre-soaked again (flexible endoscopes for early sessions need to be pre-soaked and checked for leakage)</td>
<td>Single-use accessories are used for all procedures. Reusable water bottles are used and sent to Sterile Supply Unit; for sterilization after 1 day session (and tracked appropriately). Autoclavable reusable devices (e.g., biopsy forceps) are washed, brushed and cleaned with detergent and then placed in the ultrasonic cleaner with detergent for 30 min</td>
<td>Monitoring: Tracking system in place for all steps of reprocessing procedure. Automated WD and flexible endoscope are automatically tracked and tagged by radiofrequency identification. Daily, weekly, monthly routine checking of WD. Auditing: Staff audited every 6 months. Auditing of some public hospitals every 3 months for presence of mold and TVC of final rinse water. Mold is not acceptable. TVC <10 cfu is acceptable; <1 cfu = satisfactory; 1–9 cfu on regular basis = acceptable; 10–100 cfu = risk assess for potential problem and Testing of final rinse water for TVC and mold for validating effectiveness of WD. Tracking one set of endoscope, valves, suction button, and air-water button to avoid cross-contamination between devices. Validation of drying HEPA filtered cabinet. Validation of ATP-adenosine triphosphate to audit manual cleaning of flexible endoscope channels, especially for raising elevator channel. Considering separating bronchoscopy procedure room and patients from gastrointestinal endoscopy</td>
<td>Biological monitoring of HLD of endoscopes carried out quarterly; sterilization of the endoscope carried out monthly</td>
<td></td>
</tr>
</tbody>
</table>

Digestive Endoscopy 2016; C15/C15 - C15/C15 Hygiene in digestive endoscopy © 2016 Japan Gastroenterological Endoscopy Society
<table>
<thead>
<tr>
<th>Country</th>
<th>Standards followed</th>
<th>Pre-cleaning</th>
<th>Endoscope reprocessing</th>
<th>Endoscope disinfection</th>
<th>Accessories</th>
<th>Training</th>
<th>Monitoring and audit</th>
<th>Local cascade recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Tandon 2000, Ramakrishna 2002</td>
<td>Manual cleaning carried out in endoscopy room or in a specified room</td>
<td>Majority of centers carry out manual cleaning. Automated WD used in high-volume centers</td>
<td>Kumar 2011</td>
<td>Reusable accessories are used after strict adherence to cleaning, sterilization and quality control. Informed consent for reuse</td>
<td>Training delivered by hospital education and training department</td>
<td>Monitoring done every 6 months (for scope swab and culture). HLD checked using test strips every day. Temperature and humidity are checked daily</td>
<td>As per Cipto Mangunkusumo National General Hospital SOP and SGNA 2013 documents</td>
</tr>
<tr>
<td>Indonesia</td>
<td>SGNA 2013</td>
<td>Carried out in endoscopy room by nurse. Separate reprocessing room for manual cleaning</td>
<td>Leak test; manual cleaning; rinsing after manual cleaning; visual inspection; automated HLD for endoscopes (SA >2%, and OPA 0.55%); rinsing after HLD; drying; labeling; storage; documentation; waste disposals; using reverse osmosis water; duodenoscopes are brushed especially the elevator part, cleaned using HLD, and rinsed</td>
<td>Critical devices: reused, and sterilized in center for sterilization. Non-critical devices: HLD. Suction, air water valve, and rubber biopsy valve caps are cleaned using HLD</td>
<td>Training delivered by hospital education and training department</td>
<td>Monitoring done every 6 months (for scope swab and culture). HLD checked using test strips every day. Temperature and humidity are checked daily</td>
<td>As per Cipto Mangunkusumo National General Hospital SOP and SGNA 2013 documents</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Japanese guidelines, WGO/WEO, 2011</td>
<td>Carried out by endoscopy staff immediately after procedure: endoscope tube is wiped down, and endoscope channels are flushed through using appropriate detergent solution</td>
<td>Carried out immediately after procedure with automated WD</td>
<td>Pre-cleaning must be carried out. Automatic reprocessing is required</td>
<td>Endoscopic accessories that penetrate the mucosal barrier are used once only or cleaned ultrasonically/mechanically and then sterilized/autoclaved between each patient</td>
<td>Endoscopy staff receive training in maintaining hygiene standards</td>
<td>Efficacy of disinfection procedure for endoscopy unit, endoscope channels, and accessories is monitored at regular intervals</td>
<td>JGES guidelines for endoscope disinfection is under development</td>
</tr>
<tr>
<td>Country</td>
<td>Standards followed</td>
<td>Pre-cleaning</td>
<td>Endoscope reprocessing</td>
<td>Endoscope disinfection</td>
<td>Accessories</td>
<td>Training</td>
<td>Monitoring and audit</td>
<td>Local cascade recommendations</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Korea</td>
<td>KSGE 2015</td>
<td>Carried out immediately after procedure in endoscopy room by endoscopy nurse or assistant nurse</td>
<td>Carried out immediately after procedure according to manufacturer and KSGE guidelines</td>
<td>Disposable accessories used as recommended</td>
<td>Training in maintenance by KSGE every 3 years</td>
<td>Accreditation of 'Excellent Endoscopy Unit' by KSGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>SGNA 2013</td>
<td>At bedside by assisting nurse. Endoscope leak testing and decontamination process are done in designated reprocessing room</td>
<td>Cleaning processes as per SGNA/GENCA recommendations in reprocessing room. Duodenoscope – SGNA latest update 2016</td>
<td>Minority of hospitals moving toward PAA base; however, GA is still most widely used</td>
<td>Reusable or single-use cleaning accessories are used for both government and private practice</td>
<td>Post basic training (MOH). Unit competency: every 2 years. Training delivered by vendor</td>
<td>Endoscope culture and sensitivity as per GENCA guidelines for some private hospitals. Air exchange monitored once to twice a year for some private hospitals. Government sector: too costly</td>
<td>Local guidelines are in progress for MOH approval</td>
</tr>
<tr>
<td>Singapore</td>
<td>SGNA, GENCA</td>
<td>Pre-cleaning in endoscopy room by procedure nurse as per manufacturer's instructions</td>
<td>Most centers use WD. Leak test. Cleaning as per manufacturer's instructions. HLD prepared according to manufacturer's instructions for use</td>
<td>Only approved chemicals used and manufacturer's recommendations followed for contact time, number of rinses, and minimum effective concentration</td>
<td>Single use of accessories is generally practiced – determined by individual hospital. Cleaned and disinfected as per manufacturer's recommendations. Stored with the scope with which they were used to enhance traceability</td>
<td>Determined by individual hospital. Should be frequent and assessed for competency. 12 monthly according to GENCA</td>
<td>Determines by individual hospital. Infection control/ outside organization both planned at least annually and random visits/audits</td>
<td>No national recommendation</td>
</tr>
<tr>
<td>Thailand</td>
<td>SGNA, ESGENA, GENCA</td>
<td>Carried out by nurse or assistant nurse in procedure room at bedside. Separate reprocessing room for automated WD</td>
<td>WD use OPA. Manual cleaning: as per adaptation from SGNA and ESGENA recommendations. Duodenoscope-specific procedures: as recommended by the manufacturer and SGNA guidelines</td>
<td>Combination of SGNA, ESGENA, and GENCA</td>
<td>Annually</td>
<td>Monitoring of air exchange is done every 2 years</td>
<td>Combination of SGNA and ESGENA for scope reprocessing with addition of GENCA for accessory reprocessing</td>
<td>9</td>
</tr>
<tr>
<td>Country</td>
<td>Standards followed†</td>
<td>Pre-cleaning</td>
<td>Endoscope reprocessing</td>
<td>Endoscope disinfection</td>
<td>Accessories</td>
<td>Training</td>
<td>Monitoring and audit</td>
<td>Local cascade recommendations</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Taiwan</td>
<td>DEST guidelines23,24</td>
<td>Carried out immediately after procedure in endoscopy room by endoscopy nurse. A purpose-designed reprocessing room is used for cleaning and disinfection to minimize patient and staff exposure to chemicals and contaminants.</td>
<td>Estimated 95% WD and 5% manual cleaning as per DEST recommendations. Duodenoscope-specific procedures as recommended by the manufacturer and DEST guidelines.</td>
<td>Disinfectants used in accordance with manufacturer’s instructions. Disinfectants tested every day with test strips and kits provided by manufacturers to ensure optimal activity of the products. Hospital Infection Control Unit and Taiwan Joint Commission on Hospital Accreditation regularly monitor documentation of disinfectants. Disinfection should occur immediately after cleaning, and according to specified instructions.</td>
<td>All reusable endoscopic accessories such as suction, air water valve, and rubber biopsy valve caps should not be used more than once. Water bottle and its connecting tube should be sterilized once a day and should contain sterile water.</td>
<td>Endoscopic Nursing Association (DEST) plays a major role in developing guidelines, providing CME, establishing system for certification of junior endoscopy nurses and recertification for senior endoscopy nurses every 6 years.</td>
<td>Infection Control Unit monitors microbiological surveillance by monthly microbial sampling and culture. Labor Safety Unit routinely monitors cleaning room regarding air exchange (12 times/h) and chemical level such as GA every 6 months. DEST monitoring and audit every endoscopy room every 4 years. Taiwan Joint Commission on Hospital Accreditation: monitoring and audit of every hospital every 4 years.</td>
<td>Taiwan national guidelines, and DEST statements were updated in 2016.</td>
</tr>
</tbody>
</table>

†See References for published standards, statements, and guidelines.

BSG, British Society of Gastroenterology; cfu, colony forming units; CME, continuing medical education; DEST, Digestive Endoscopy Society of Taiwan; ESGENA, European Society of Gastroenterology and Endoscopy Nurses and Associates; GA, glutaraldehyde; GENCA, Gastroenterological Nurses College of Australia; GESA, Gastroenterological Society of Australia; HEPA, high-efficiency particulate air; HLD, high-level disinfection/disinfector; JGES, Japan Gastroenterological Endoscopy Society; KSGE, Korean Society of Gastrointestinal Endoscopy; MOH, Ministry of Health Malaysia; OPA, orthophthalaldehyde; PAA, peracetic acid; SGNA, Society of Gastroenterology Nurses and Associates, Inc.; SOP, standard operating procedure; TVC, total viable count; WD, washer-disinfector; WEO, World Endoscopy Organization; WGO, World Gastroenterology Organization.
• Reprocessing rooms should be designed ergonomically to avoid musculoskeletal disorders and injuries.
• Injection needles as well as endoscopic/ultrasound needles should be used once only and should never be reprocessed.
• Regular health surveillance is recommended for all staff working with potentially sensitizing or allergy-inducing chemicals (e.g. related to allergic asthma, skin and/or mucosal sensitivity problems). Health surveillance should also cover problems of non-ergonomic workplaces (e.g. musculoskeletal disorders).
• It is recommended that all staff be offered appropriate vaccination against infectious agents (e.g. type B hepatitis). Staff known to be disease carriers should avoid duties that could transmit their disease to patients. Treatment should be offered if applicable (e.g. to carriers of methicillin-resistant *Staphylococcus aureus*).

Nurses with special training in digestive endoscopy are key players in maintaining hygiene standards. The endoscopy nursing associations (Society of Gastroenterology Nurses and Associates [SGNA], ESGENA) play a major role in developing guidelines and continuing medical education.

MONITORING AND AUDIT: PROCESS OF VALIDATION AND ROUTINE TESTING

The reprocessing room

MONITORING AND AUDIT of hygiene practices in digestive endoscopy encompass two areas of practice – the reprocessing room and the reprocessing procedures.

The endoscopy department or unit must fulfill technical and organizational prerequisites. A purpose-designed room for cleaning and disinfection that is separate from the procedure rooms is recommended in order to minimize patient and staff exposure to the chemicals used in cleaning and disinfection (e.g. toxic/allergic reactions, GA vapor, or PAA components), and to reduce the risk of infection and contamination with potentially infectious material, blood, and other body fluids.

The reprocessing procedures

Washer-disinfector

The manufacturer must provide information about the structure and function of the WD. The validation can be carried out when the WD is installed according to the manufacturer’s instructions and local safety regulations. Validation (periodic microbial sampling to demonstrate a quality standard in reprocessing) is an important quality-assurance tool in hygiene and infection control, and patient safety, whether endoscopy procedures are carried out in hospitals, in private clinics, or in doctors’ offices.

The clinical service provider relies on the correct functioning of automated WD according to the manufacturer’s specifications. Current tools for regular quality control are routine maintenance and microbiological surveillance. Validation procedures have long been common practice in the monitoring of sterilization devices; for example, in central sterilization units.

The ESGE/ESGENA guidelines provide practical details on the role of different stakeholders in effective monitoring. These stakeholders include:

• clinical service providers who have the responsibility of meeting structural and organizational requirements and to provide educated staff for the safe use of WD;
• endoscopists, endoscopy nurses, and other users of WD who use flexible endoscopes and who are responsible for the safe reprocessing of endoscopy equipment;
• hospital hygienists, microbiological personnel, microbiologists, and authorized agencies that carry out regular microbiological quality control in endoscopy units;
• manufacturers, suppliers, and authorized third parties who sell, install, and maintain flexible endoscopes and WD for gastrointestinal endoscopy;
• institutions, companies, and other qualified agencies that are authorized to carry out validation of WD.

Routine checks of technical parameters (such as leak testing and channel obstruction testing, and testing of temperature, water quality etc.) can reduce the required number of microbiological tests on endoscopes, as the technical tests demonstrate that the WD is working within its specifications. In addition, paper print-outs document that the particular reprocessing cycle has been completed within the required process parameters. Daily checks of single machine parameters document that the WD is operating within its specifications. The manufacturer or the service provider may define these daily checks.

Regular maintenance of WD is part of quality management and is a prerequisite for their safe use. It ensures early detection of possible weaknesses and defects.

Manual cleaning

The same prerequisites for the reprocessing room and cleaning are mandatory for manual cleaning. The safety of staff is even more important in this setting because of exposure to chemical vapors in an enclosed space.
Regular monitoring of various protocols should be conducted and reviewed, as personnel change and manual cleaning is not as reliable as automated WD. Quality should be assessed at the same level for all endoscopy procedures and settings.

LOCAL CASCADE RECOMMENDATIONS: NATIONAL GUIDELINES AND STATEMENTS

TABLE 3 PROVIDES DETAILS of endoscope reprocessing practices in countries of Asia and the Middle East. Information on the guidelines followed has been included where appropriate.

ACKNOWLEDGMENTS

JEAN-FRANCOIS REY IS very grateful to Christiane Neumann (past-president ESGENA) for her support in the field during the past 40 years, Ulrike Beilenhoff (past-president ESGENA) for her skillful support and contribution to ESGE/ESGENA guidelines over the past 20 years, and Dianelle Duforest-Rey (former treasurer ESGENA) for her personal contribution to daily hygiene practice and guideline editing. Without nurse support, high-quality standards are not possible.

DISCLAIMER

THIS WEO POSITION statement represents a consensus of best practice based on the available evidence at the time of preparation and may not apply in all situations. The statement should be interpreted in the light of specific clinical situations and resource availability.

CONFLICTS OF INTEREST

HAEN LEE GOH has participated in company-sponsored speaker bureaus for Takeda Pharmacy, AstraZeneca, and Eisai. James Lau has received honoraria or consultant fees from Olympus, Cook, and Boston Scientific. Minghwa Yuen is Marketing Director of Cantel Medical Asia/Pacific Pte. Ltd. All other authors declare no conflicts of interest.

REFERENCES

© 2016 Japan Gastroenterological Endoscopy Society